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Abstract. Traditional statistical process control charts assume that generated process data are 

normally and independently distributed, i.e. uncorrelated. This research presents the effect of 

autocorrelation on process control charts to monitor the two quality characteristics of fine coals 

produced in a coal washing plant for power plant, namely moisture content and ash content. 

Individual (X) and moving range charts (MR) were constructed to monitor 10 months data. It 

was determined that even though both data values obey the normal distribution, there is a 

moderate autocorrelation between their observations. For simulating the autocorrelated data, 

ARIMA time-series models were used. It was found that X/MR charts showed many false 

alarms due to the autocorrelation. The ARIMA (1, 0, 1) for moisture content and ARIMA (0, 1, 

2) for ash content were determined to be the best models to remove autocorrelation. Compared 

to large number of false alarms on conventional X/MR charts and on charts applying the 

Western Electric rules, which assume the data independence, there were much less unusual 

points on the X/MR charts of residuals (Special Cause Charts). Usage of residual based control 

charts is suggested when the data are autocorrelated. 

keywords: coal, autocorrelation, statistical control charts, special cause charts, ARIMA 

models 

1. Introduction 

Statistical process control (SPC) has been proposed firstly by Dr. Shewhart in 1931 

and then, many SPC charts have been developed and improved to use for different 

process data. In its basics form, a control chart compares process observations with a 

pair of control limits (Karaoğlan and Bayhan, 2011). One of the essentials of 

producing high quality low cost product is to adopt and apply the SPC correctly. SPC 

is a tool for achieving and improving quality standards. The most important and 

sophisticated tool of SPC is control charts. 

SPC is widely used to monitor, control and improve quality in many industrial 

processes (MacCharty and Wasusri, 2002). The SPC has been also used in mining and 

mineral processing field to monitor the grade variations and to ensure the product 

specifications. In a review study, MacCharty and Wasusri (2002) summarize the usage 

of non-standard applications of statistical process control charts. Some application 
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examples of SPC can be given from the literature for mining/mineral processing 

industry (Ankara and Bilir, 1995; İpek et al., 1999; Bhattacherjee and Samanta, 2002; 

Bayat and Arslan, 2004; Aykul et al., 2005; Vapur et al., 2005; Elevli and Behdioğlu, 

2006; Ankara and Yerel, 2008; Vapur, 2009; Elevli, 2009; Aykul et al., 2010; Yerel 

and Ankara, 2011). However, the information related to the application of SPC in 

mineral industry is still limited when compared to other industrial areas.  

Traditional SPC techniques are based on the assumption that generated data 

generated are normally and independently distributed. However, the independency 

assumption is not realistic in practice (Demirkol, 2008). Therefore, the assumption of 

normality and indepence of data must be satisfied in order to apply SPC for a process 

(Bhattacherjee and Samanta, 2002).  

In the continuous industries processes most data are autocorrelated (Le, 1998). 

Since observations for many processes exhibit autocorrelation that may be the result of 

dynamics that are inherent to the process, the autocorrelation is more likely to be 

observed in processes when observations are closely spaced in time (Lu and Reynolds, 

2001). Such autocorrelations can occur for a number of reasons. One reason is  

because of current automated measurement and recording technology, subgroup 

samples may be taken with a high frequency, with consecutive samples being similar 

in nature and hence statistically correlated. Other samples of correlated subgroups 

occur when items made by a worker exhibit similar characteristics due to the way the 

machine is handled, the process shows seasonal patterns due to materials or weather, 

or the alertness of a worker changes over time (Le, 1998).  

The effect of autocorrelation on the performance of process control charts have 

been shown by many researhers (Alwan and Roberts, 1998; Lu and Reynolds, 1999; 

Montgomery and Mastrangeko, 1991; Atienza et al., 1997; Reynolds and Lu, 1997; 

Zhang, 1997). Results of these studies have shown that traditional SPC methods are 

strongly affected by data autocorrelation. Under autocorrelation conditions, the 

traditional control charts will become ineffective and many false alarms may occur on 

the charts. Consequently, there has been considerable research in recent years on 

designing SPC procedures suitable for autocorrelated processes.  

In the case of autocorrelation, a very high false alarm rate will cause process 

personnel to waste effort in unproductive searches for special causes. This can lead to 

a loss of confidence in the control chart, and even to process monitoring being 

discontinued. Thus, autocorrelation should not be ignored when designing control 

charts, because failure to properly account for autocorrelation can greatly reduce or 

eliminate the effectiveness of control charts (Lu and Reynolds, 2001). 

For these reasons, some modifications for traditional control charts are necessary. 

As an alternative to traditional control charts which plot the original observations, a 

number of papers have suggested fitting a time series model (Alwan and Roberts, 

1988; Reynolds and Lu, 1997; Lu and Reynolds, 1999; Lu and Reynolds, 2001). The 

residuals obtained from time series model are then plotted on standard control charts. 
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To apply these methods, a time series model of the process is required (Apley and Lee, 

2003). 

Alwan and Roberts (1988) introduced the first residual control chart, namely 

special cause chart (SCC). A residual Shewhart chart was developed by them and it is 

called as the special control chart (SCC). The SCC is an individual control chart 

(individual control chart is constructed by plotting single observations and setting 

control limits on these observations) applied to the residuals. Therefore, the SCC is 

also known as the X residual chart in the literature. In residual charts, an appropriate 

time series model is fitted to the autocorrelated observations and the residuals are 

plotted in a control chart (Demirkol, 2008).  

Even though the assumptions required for the applicability of SPC methods are 

known to be essential, their existence may questionable in mining industry 

(Bhattacherjee and Samanta, 2001). When the literature is reviewed, the impact of 

autocorrelation on SPC have been considered in mineral applications by only few 

studies (Samanta and Bhattacherjee, 2001; Bhattacherjee and Samanta, 2002; 

Samanta, 2002; Elevli et al., 2009). Indeeed, the observations in these studies are 

assumed to normally distributed and independent that is uncorrelated.  

Turkey has 8.3 billion tons of lignite coal reserves (Arslan, 2006). Since 80% of 

Turkish lignite coal reserves has a heating value of below 2500 kcal/kg, large amount 

of them are used in power plants. Moisture and ash contents of coals are the two 

important quality characteristics that determine properties of coals burning in power 

plants. Substantial amount of low quality coals which have high ash and moisture 

contents are transformed into energy by burning them in power plants (Tekir et al., 

2009). In a power plats that burns lignites, moisture and ash contents are the key 

quality indicators monitored. Therefore, lowering the ash contents of lignites to the 

desired levels is an essential entity to reduce problems and costs associated with the 

ash. Coals having high ash and moisture contents cause serious problems such as 

incrasing the costs of operation, transportation and burning of coal together with 

disposing the ash to dams in power plants (Tekir et al., 2009). For these reasons, coal 

fines produced in a coal washing plant should have desired moisture and ash content 

limits in order to be used as feeding material for a power plant. To control the coal 

qualities produced in washing plants, it is necessary to monitor the coal characteristics 

by applying an effective method such as statistical process control.  

The aim of this paper is to investigate individual X control charts based on the 

original observations or on residuals obtained by the time series of ARIMA models for 

moisture and ash contents of fine coal products that are produced for power plant as a 

feeding material in Tunçbilek washing plant. Autocorrelated observations were 

characterized by ARIMA models and special control charts (SCC) were utilized to 

monitor the residuals, based on the ARIMA model forecast values. The performance 

of the standard Shewhart chart, which ignores subgroup correlations for the two coal 

quality variables, is compared with the X charts of residuals. 
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2. Statistical process control charts 

Statistical Process Control (SPC) charts are graphical presentations of the sample 

quality for one parameter measured in control samples. In a basic the SPC chart, three 

horizontal lines, the center line and two control limits, are plotted on a control chart, 

which show the mean value and three standard deviations distance from either side of 

the mean value, respectively (an example is given in Fig. 1). If the plotted observatios 

fall outside the limits, the process is consired to be out of control. The process needs to 

be stopped and inspected for causes when the out of control points are detected 

(Carson and Yeh, 2008). 

 

Fig. 1. A traditional Shewhart control chart 

2.1. X/MR charts for individual observations 

In many situations, the sample size used for process control is n = 1; that is, the 

sample consists of an individual unit. In such situation, the individuals control chart 

(also called as X chart or I chart) is used. Mean of the individual values for m 

individual observations gives us the center line of the X control chart as: 
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The control chart for individuals uses moving range of two successive observations 

to estimate the process variability and it is also known as MR chart (Montgomery and 

Runger, 2011). The moving range is defined as MRi = |Xi-Xi-1| and for m observations 

the average moving range ( MR ) is: 
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An estimate of standard deviation (σ) is: 

128.12

MR

d

MR
 .     (3) 

Here, d2 is a constant depending on the sample size, n, (Montgomery and Runger, 

2011). It is 1.128 for n = 2. 

The center line (CLX) and upper control limit (UCLX) and lower control limit 

(LCLX) for a control chart for individuals is (Montgomery and Runger, 2011): 
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Since each moving range is the range between two consecutive observations. It 

should be noted that there are only m-1 moving ranges. The parameters for a control 

chart of moving range are defined as follows: 

MRMRDUCLMR 267.34  ,    (7) 

MRCLMR  ,      (8) 

03  MRDLCLMR .     (9) 

D3 and D4 are constants depending on the sample size, n. It is possible to establish 

a control chart on the MR using D3 and D4 for n = 2 (Montgomery and Runger, 2011). 

The LCLMR for this moving range chart is always zero because D3 = 0 for n = 2. The 

D4 equals to 3.267 for n = 2 while determining the UCLMR . 

For a simple control chart in Fig. 1 control limits were plotted as warning lines 

from the action limits of 3σ. In this figure, only measurements that are plotted further 

than 3σ from the central line indicate an out-of-control process. However, additional 

warning limits in Shewhart charts are commonly used in practice, since they help the 

analyst to recognize possible changes in the process before it shifts out of 3σ (Carson 

and Yeh, 2008). For example, when two consecutive out of 2σ samples are detected, 

this can indicate some changes in the process. Therefore, it is advisable to perform 

some rechecks of the process at this point.  

It is known that the Shewhart control chart is insensitive to small shifts in the 

process parameter. To enhance the ability for the chart to detect small shifts more 

quickly, one way is to add sensitive rules in the chart (Chang and Wu, 2011). Several 

frequently used rules suggested by the Western Electric (1956) are (Montgomery and 

Runger, 2011):  
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1. One or more points fall outside the 3σ control limits, 

2. Two of three consecutive points fall outside the 2σ warning limits, 

3. Four of five consecutive points fall beyond the 1σ limits, 

4. Eight points in a row fall one side of the center line. 

The above rules are always referred to runs rules. In the sequel, a control chart that 

uses several rules simultaneously is referred to a compound control chart. It should be 

noted that rule 1 in included in all compound control charts. Also note that these rules 

can only be applied to one side of the center line. There are more rules for detecting 

small shifts and these can be added to control.  

In this study, the four rules listed above were used when considering additional 

warning limits by Western electric rules. These plots searches and identifies any 

unusual patterns in the data. This is often helpful in detecting processes which are 

slowly drifting away from target, even though no points may fall outside the control 

limits. 

3. Time series models 

The methodology of ARIMA estimation and model selection is a classical topic 

covered in most textbooks on time series analysis such as Montgomery et al. (2008). 

Therefore, we will not duplicate the descriptions of already well documented 

methodologies. We will give only practical information in this context to the models. 

3.1. Autoregressive Process (AR)  

Most time series consist of elements that are serially dependent in the sense that 

one can estimate a coefficient or a set of coefficients that describe consecutive 

elements of the series from specific, time-lagged (previous) elements. This can be 

summarized in the following Eq. 10: 

tptpttt XXXX    ...2211 ,   (10) 

where Xt is response (dependent) variable at time t; Xt-1, Xt-2, Xt-p response variable at 

time lags t-1, t-2,…t-p, respectively; ϕ1, ϕ2, ϕp, denote estimated coefficients, εt is an 

error term at time t, and 

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1  with μ denotes the process mean.  

It should be noted that an autoregressive process will only be stable if the 

parameters are within a certain range for example, if there is only one autoregressive 

parameter, then it must fall within the interval of -1<ϕ1<+1. Otherwise, past effects 

would accumulate and the values of successive Xt's would move towards infinity, that 

is, the series would not be stationary. If there is more than one autoregressive 

parameter, similar (general) restrictions on the parameter values can be defined 

(Montgomery et al., 2008). 
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3.2. Moving Average process (MA)  

Independent from the autoregressive process, each element in the series can also be 

affected by the past error (or random shock) that cannot be accounted for by the 

autoregressive component, that is: 

qtqttttX    ...2211 ,   (11) 

where Xt is the time series, μ is the mean of the series, εt-I denotes random noise term 

with mean 0 and variance σε
2
 at time t. θ1, θ2, θq, are the moving average model 

parameters. The value of q is called the order of the MA model. 

3.3 Autoregressive Moving Average model (ARIMA) 

The ARIMA model which combines the autoregressive and moving average 

parameters and includes differencing in the model was introduced by Box and Jenkins 

(1976) (Montgomery et al., 2008). This equation was used to forecast one-step ahead 

disturbances, according to data characteristics of stationary or non-stationary as shown 

in Eq. 12. 

qtqttptdptdtdtd XXXX    ...... 112211 , (12) 

Three types of parameters in the model are: the autoregressive parameters (p), the 

number of differencing passes (d), and moving average parameters (q). The Box and 

Jenkins models are summarized as the ARIMA (p, d, q); so, for example, a model 

described as (0, 1, 2) means that it contains 0 (zero) autoregressive (p) parameters and 

2 moving average (q) parameters which were computed for the series after it was 

differenced once (documentation.statsoft.com). 

The input series needs to be stationary for ARIMA. It should have a constant mean, 

variance, and autocorrelation through time. Therefore, the series are first differentiated 

until they are stationary. Sometimes the series also require log transformation of data 

to stabilize the variance. The d parameter indicates the number of times the series 

needs to be differenced to achieve stationarity (documentation.statsoft.com). The 

necessary level of differencing is determined by examining the plot of the data and 

autocorrelogram. Significant changes in level (strong upward or downward changes) 

usually require first order non seasonal (lag=1) differencing; strong changes of slope 

usually require second order non seasonal differencing. When the estimated 

autocorrelation coefficients decline slowly at longer lags, first order differencing is 

usually needed (documentation.statsoft.com). Some time series may require little or no 

differencing, and over differenced series produce less stable coefficient estimates It is 

needed to decide how many autoregressive (p) and moving average (q) parameters are 

necessary to yield an effective but has the fewest parameters and greatest number of 

degrees of freedom among all models that fit the data model of the process. The 

number of p or q parameters very rarely need to be greater than 2 in practice 

(documentation.statsoft.com). 



502 A. Tasdemir 

The ARIMA models may also include a constant in addition to the standard p and q 

parameters. The interpretation of a constant that is statistically significant depends on 

the model fitted. The expected value of the constant is m, the mean of the series, when 

there are no AR parameters in the model. The constant represents the intercept, if there 

are the AR parameters in the series. If the series is differenced, then the constant 

represents the mean or intercept of the differenced series. If the series investigated is 

differenced once, and there are no the AR parameters in the model, then the constant 

represents the mean of the differenced series, and therefore the linear trend slope of 

the undifferenced series (documentation.statsoft.com). 

4. Methodology 

The objective of this paper is to investigate effect of autocorrelation on the 

performance of the Shewhart individual control charts based on original observations 

or residual charts. This procedure was applied for the data obtained from moisture and 

ash contents of coal fines which are produced at the Tunçbilek coal washing plant and 

used as power plant feeding in Tunçbilek, Turkey. The used data were for the -18+0.5 

μm size coal fines, called middling product, which is concentrated by dense medium 

cyclones. The mixture material containing magnetite as dense medium and coals, that 

sunk in the first dense medium cyclone are feed to second dense medium cyclone 

flowsheet, having 1800 g/Mg dense medium, for the final separation of -18+0.5 μm 

coals from schist. The middling product is obtained from and an overflow of cyclone 

and schist are separated from the underflow of the cyclone. The middling products are 

then separated from magnetite, dried and sent to the power plant as a feeding material. 

Daily moisture and ash content data from January 2011 to October 2011 for middling 

product were supplied from the plant. Totally 242 measurements were obtained and 

used in the study. 

These data were imported into the statistical software package. Trial version of 

Statgraphics Centurion XVI and Minitab 16 softwares were used to construct different 

control charts for statistical analyses. First, individual X and moving range (MR) 

charts assuming normality and independence of observations and X/MR charts 

applying the Western electric rules to detect the small shifts were generated to monitor 

the two quality characteristics. Normality and independence of data were checked by 

applying statistical methods. Since strong autocorrelations were determined for both 

quality values, the most suitable time series models to remove the autocorrelation 

between the observations were selected by applying the ARIMA methods. Then, 

special cause charts (X and MR charts of residuals obtained from ARIMA models) 

were also generated. Finally, performance of the Shewhart charts of individual 

observations is compared with the performance of special cause charts for the two coal 

quality measurements to control the unusual points.  
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5. Results and discussions 

5.1. Control charts for individual coal quality observations 

A major drawback of the Shewhart variable charts is its dependency on normality 

assumption. First, the normal probability plots were generated. When the distribution 

of the variable is normal, the observed values show a near-linear distribution in the 

linear line drawn of the chart. The resulted plots including statistical information are 

given in Fig. 2. As seen in these plots, observed data distribution are almost linear 

indicating that both variables obey the normal distribution function. The data of the 

two coal characteristics have been also checked for normality by applying the 

Anderson-Darling normality test. The Anderson-Darling values were 0.659 and 0.249 

for moisture and ash content of coals, respectively. Also p values of both variables 

were higher than 0.05, suggesting that the data came from a process with normal 

distribution. The result indicates that the first normality assumption needed for 

applying the standard Shewhart control charts was satisfied.  
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Fig. 2. Normal probability plots of moisture and ash contents 

The X and MR control charts of individual data for moisture content and ash 

contents are given in Fig. 3 and Fig. 4 respectively. The calculated control chart 

parameters are given in Table 1. The charts are designed to determine whether the data 

come from a process which is in a state of statistical control. The control charts are 

constructed under the assumption that the data come from a normal distribution with a 

mean equal to 17.83 for moisture content, 40.51 for ash content and a standard 

deviation equal to 1.19 for moisture content, 3.76 for ash content. Of the 242 

individual observations shown on the charts, 25 are beyond the 3σ control limits on the 

X chart while 3 are beyond the limits on the MR chart for moisture content. On the 

other hand, 20 points are beyond the 3σ control limits on the X chart while 2 points are 

beyond the limits on the MR chart. Since the probabilities of seeing 25 or more points 

for moisture content and 20 or more points for ash content beyond the limits just by 

chance is 0.0. When the data come from the assumed distribution and they are not 

autocorrelated, we can declare the process to be out of control at the 95% confidence 

level. 
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When the Western electric rules were applied to the two coal quality 

characteristics, much more unusual points were determined in these charts as shown in 

Figs. 3 and 4. When these plots are examined, we can see that the efficiency of 

warning limits for detection of process shifting toward out-of-control state is increased 

when applying the Western Electric rules. Two hundred and 171 unusual runs have 

been detected for moisture content and ash content, respectively. The plots show 

observations at which the unusual pattern was detected as well as the particular rule 

which was violated. For example, rule 3 was violated for point 5 in the moisture 

content of X chart and for point 18 in the ash content X chart. At these locations, there 

were groups of 4 out of 5 points beyond 1.0 sigma, all on the same side of the 

centerline. 
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Fig. 3. X/MR charts of moisture content and unusual points by Western electric rules 

 

A
s
h

 c
o

n
te

n
t 

(%
)

51.79

X Chart for Col_2

0 50 100 150 200 250

Observation

24

34

44

54

64

40.51

29.23

 

M
o

v
in

g
 r

a
n

g
e

13.86

MR(2) Chart for Col_2

0 50 100 150 200 250

Observation

0

3

6

9

12

15

4.24

0.00

 

Fig. 3. X/MR charts of ash content and unusual points determined by Western electric rules 

Table 1. Shewhart chart parameters of moisture and ash contents of coals 

X /MR Chart  

parameters 

Moisture content (%) Ash content (%) 

UCLX 21.39 51.79 

X  17.83 40.51 

LCLX 14.27 29.23 

UCLMR 4.38 13.86 

MR  1.34 4.24 

UCLMR 0.0 0.0 

21 dMR  1.19 3.76 

2σ 2.37 7.52 

3σ 3.56 11.28 
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Since the normality assumptions are satisfied by the normality tests, the 

performance of the individual control charts which are discussed so far is valid when 

the moisture and ash contents of coals are independent. However, if the data are 

autocorrelated, these findings can result in many wrong decisions about the process. 

Therefore, whether there is any autocorrelation between the consecutive observations 

of the two quality characteristics, or not, is tested in the following section. 

5.2. Testing autocorrelation of coal characteristics 

In addition to normality, independence of data must also be satisfied in order to 

apply SPC for the processes. Autocorrelation means the correlation between data 

observed, builds up automatically. If two variables are related in such a way that a 

change in one variable is reflected by a change in the other variable, the two variables 

are said to be correlated (Stapenhurst, 2005). Data are autocorrelated if each value is 

correlated to the previous one. Autocorrelation is a problem because the control charts, 

and indeed most statistical analyses, assume that the data are not autocorrelated. A 

quick and simple method of checking for autocorrelation is to draw a scatter diagram 

of each value, Xi, against the previous value Xi-1 (Stapenhurst, 2005). Figure 5 shows 

the scatter diagram of moisture and ash contents of fine coals used in this study. It is 

clear that there are considerable positive correlations between the two consecutive data 

values of both variables. In the autocorrelated series of observation, each individual 

observation is dependent upon previous observation (Singh and Prajapati, 2011). This 

also exists for the two coal quality values and the degree of autocorrelation should be 

determined and also these autocorrelations must be removed by an appropriate 

ARIMA time series model before constructing statistical control charts.  
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Fig. 5. Scatter diagrams showing autocorrelation for moisture and ash contents 

It is possible to calculate the autocorrelation between consecutive values, that is, of 

lag 1. It is also possible to calculate the autocorrelation of lag 2 (i.e. between values 

two observations apart) or any number of observations apart (Stapenhurst, 2005). The 

correlation coefficient can be calculated for lags 1, 2, 3, etc. and it should steadily 

decrease. For some value n, the correlation coefficient will not be significant and this 

gives us the minimum time that should be allowed between sampling.  
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To check this, autocorrelation and partial autocorrelation function plots were 

generated for 25 lags. The sample Autocorrelation Function (ACF) and the sample 

Partial Autocorrelation Function (PACF) which are representative of the 

autocorrelation structure across periods of the time series, displayed in Fig. 6 for the 

moisture content time series (top plots) which show relatively stationary 

characteristics and for the ash content time series (bottom plots) which show some 

characteristics of a non-stationary process. There is a high degree of correlation (r = 

0.7) for moisture content and (r = 0.6) for ash contents of consecutive data points. The 

sample ACF of moisture content decays linearly and the corresponding PACF 

indicates the most important contribution at the first lag. The sample ACF of ash 

content decays very slowly and the corresponding PACF shows one very significant 

contribution at lag 1 and then two contributions at lags 2 and 3.  

Due to these facts it is likely to see an increased number of false alarms in both 

Shewhart control charts. Continuing to use a control chart that signals too often can be 

counter-productive because a real signal may be ignored as just another false alarm. Estimated Autocorrelations for Col_1
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Fig. 6. ACFs and PACFs of moisture (top plots) and ash (bottom plots) contents 

5.3. ARIMA fits and residuals 

To remove the autocorrelations of two quality characteristics, ARIMA time series 

models that fit the best to the moisture and ash contents were determined by 

Statgraphics software. We use the ARIMA procedure in Statgraphics software to 

estimate the models for moisture and ash contents.  

Tables 2 and 3 show the values of model fit statistics used for the ARIMA model 

selection for the moisture content and ash content respectively. In these tables, A, B, 

C, D and E denote the ARIMA models that can be suitable for the two quality 

characteristics. The five ARIMA models in the list are those that fit best, among 
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dozens that were fit. The most suitable model between them was selected by applying 

the selection criteria. The procedure fits each of the models indicated and selects the 

models that give the smallest value of the selected criterion. There are six criteria to 

choose from: (1) the root mean squared error (RMSE), (2) the mean absolute error 

(MAE), (3) the mean absolute percentage error (MAPE), (4) the mean error (ME), (5) 

the mean percentage error (MPE), (6) the Akaike Information Criterion (AIC).  

Each of the statistics is based on the one-ahead forecast errors, which are the 

differences between the data value at time t and the forecast of that value made at time 

t-1. The first three statistics measure the magnitude of the errors. A better model will 

give a smaller value. The last two statistics measure bias. A better model will give a 

value close to 0. This table compares the results of fitting different models to the data.  

The model with the lowest value of the Akaike Information Criterion (AIC) was 

chosen as the best describing model in this study. The AIC is calculated from: 

  ncRSMEAIC 2ln2  ,    (13) 

where RSME is the root mean squared error during the estimation period, c the number 

of estimated coefficients in the fitted model, and n the sample size used to fit the 

model. The AIC is a function of the variance of the model residuals, penalized by the 

number of estimated parameters. In general, the model will be selected that minimizes 

the mean squared error without using too many coefficients (relative to the amount of 

data available). 

The models with the lowest value of AIC are ARIMA (1,0,1) with a constant for 

the moisture content and ARIMA (0,1,2) for ash content though several other models 

are very similar, as presented in Table 2 and Table 3. Therefore, the ARIMA models 

are preferred for our data in this research. 

Table 2. ARIMA model fit statistics for moisture content 

A: ARIMA(1,0,1) with constant; B: ARIMA(2,0,0) with constant; C: ARIMA(1,0,2) with constant;  

D: ARIMA(2,0,1) with constant; E: ARIMA(2,1,1) 

Table 3. ARIMA model fit statistics for ash content 

Model RMSE MAE MAPE ME MPE AIC 

(A) 4.62662 3.67199 9.47837 -0.168696 -1.69922 3.08018 

(B) 4.63186 3.67325 9.5009 -0.178473 -1.74001 3.08245 

(C) 4.63362 3.66381 9.425 -0.00738307 -1.29087 3.09147 

(D) 4.618 3.61403 9.35612 -0.10959 -1.65678 3.09298 

(E) 4.63713 3.66895 9.46142 -0.16297 -1.67918 3.09299 
A: ARIMA(0,1,2); B: ARIMA(1,1,1); C: ARIMA(0,1,2) with constant; D: ARIMA(1,0,2) with constant;  

E: ARIMA(1,1,2) 

Model RMSE MAE MAPE ME MPE AIC 

(A) 1.56223 1.24302 7.09856 0.0137352 -0.713845 0.917022 

(B) 1.5634 1.24791 7.1247 0.0160021 -0.705291 0.91852 

(C) 1.56514 1.24187 7.09152 0.0129439 -0.715767 0.929005 

(D) 1.56633 1.24641 7.11658 0.0119596 -0.722733 0.930528 

(E) 1.57798 1.23127 6.99972 0.0646808 -0.372863 0.937088 
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Parameters of ARIMA (1,0,1) model for moisture and ARIMA (0,1,2) model for 

ash content are given in Table 4. The output summarizes the statistical significance of 

the terms of the forcasting model. The terms with p-values less than 0.05 are 

statistically significantly different from zero at the 95.0% confidence level. For the 

ARIMA (1,0,1) model, the p-value for the AR(1) term is less than 0.05, so it is 

significantly different from 0. The p-value for the MA(1) term is less than 0.05, so it is 

significantly different from 0. The p-value for the constant term is less than 0.05, so it 

is significantly different from 0. The estimated standard deviation of the input which 

noise is equal to 1.56364. As the evidence of Fig. 6, ACF of the time series values 

falls down fairly quickly for the moisture content, then the time series values can be 

considered stationary. Therefore, the moisture values were not need to be 

differentiated. For the ARIMA (0,1,2) model, the p-value for the MA (1) and MA(2) 

terms are less than 0.05, so they are significantly different from 0. The estimated 

standard deviation of the input which noise is equal to 4.62806. This model does not 

contain a constant. As seen in ACF of ash content it goes down very slowly, the time 

series values of ash content were considered non-stationary (Fig. 6). The ARIMA 

(0,1,2) model means that the data are differenced once and a second-order moving 

average term is included, with no intercept. 

We obtained the moisture content model in the form: 

11 284.0849.0709.2   ttt XX   with the AIC of 0.917. 

We also obtained the ash content model in the form: 

211 215.0574.0   tttt XX   with the AIC of 3.08. 

Table 4. Summaries of parameters of ARIMA models 

ARIMA (1,0,1) with constant model for moisture content 

Parameter Estimate Standard Error t-value p-value 

AR(1) 0.848526 0.0504203 16.829 0.000000 

MA(1) 0.284025 0.0867921 3.27247 0.001224 

Mean 17.8889 0.446367 40.0767 0.000000 

Constant 2.70971    

ARIMA (0,1,2) model for ash content 

Parameter Estimate Standard Error t-value p-value 

MA(1) 0.574255 0.0627454 9.15215 0.000000 

MA(2) 0.215334 0.0633602 3.39857 0.000794 

Figure 7 shows the actual and fitted plots of individual observations comparatively. 

As seen in these figures, the fitted values by ARIMA models were very close to the 

actual quality characteristics for both variables. 

Figure 8 shows the residual autocorrelations and residual partial autocorrelations 

for moisture and ash contents respectively. As seen in these plots, the autocorrelation 

removed successfully by applying the ARIMA models and there are no 

autocorrelations between residual values of two coal quality characteristics. Also, as 

shown in Fig. 9, the residuals obtained from ARIMA models obey the normal 
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distribution very well. Since the normality and independence assumptions were 

satisfied by the ARIMA model residuals, the standard Shewhart charts can be applied 

conveniently to monitor the moisture and ash contents. 
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Fig. 7. Actual and fitted moisture contents by ARIMA (1, 0, 1) with constant model and ash contents by 

ARIMA (0,1,2) model 
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Residual Partial Autocorrelations for Col_1
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Fig. 8. ACFs and PACFs of residuals for moisture content by ARIMA (1,0,1) with constant model and for 

ash content by ARIMA (0,1,2) 

5.4. X/MR Charts for monitoring forecast residuals 

Figure 10 shows the X and MR charts of residuals for individual moisture and ash 

contents. Even applying the Western electric rules, the number of out-of control points 

signaficantly reduced the false alarms. There are only 5 and 6 unusual points in X 

charts of moisture and ash contents, respectively. There is only one point exceeding 3σ 

limits for moisture and no out-of control point for ash content. On the other hand these 

numbers are 2 and 3 on the MR charts for the moisture and ash contents, respectively. 
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Fig. 9. Normal probability plots of residuals obtained by ARIMA models for moisture and ash contents 
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Fig. 10. The X and MR charts of residuals (special cause charts) for moisture (top plots) and ash (bottom 

plots) contents 

It is known from literature that these charts would immediately lack the robustness 

when the observations violated the conditions, and the problem was that most 

industrial processes are continuous and correlated. When the data were highly 

correlated, the traditional charts would signal the high rate of false alarms. Alwan and 

Roberts (1995) analyzed sample applications of control charts and showed that about 

85% displayed incorrect control limits were due to the autocorrelation in the data. 

They pointed out that there would be lots of false prediction or missing alarms when 

the autocorrelations were ignored. According to results obtained from this study, 

ignoring autocorrelation in coal data also causes false out-of control points in the SPC 

charts. 

6. Conclusions 

Obeying the normality is not enough for applying the SPC charts to monitor two 

discussed here coal quality characteristics. The results of this study also showed that 
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autocorrelation strongly affected performance of the SPC charts in case of coal 

washing data. It was determined that the data of daily moisture and ash contents of the 

coal washing plant were moderately autocorrelated. For this reason, much more out-of 

control points on the traditional Shewhart charts, which assumes the independence of 

observations with normaly distributed data, were detected for both variables.  

The series of daily values of moisture contents are best described by ARIMA 

(1,0,1), with a constant model. The ARIMA (0,1,2) model is recommended to be used 

for generating time series of ash contents. Reduced number of out-of control points in 

the residual control charts showed us the importance of autocorrelation in coal 

industry and this autocorrelation should be removed before constructing a control 

chart to monitor the quality characteristics. It is also shown that the Shewhart control 

charts of residuals which are independent and normally distributed and obtained from 

ARIMA models are more appropriate to find the true unusual points otherwise huge 

amount of wrong out-of control points are recorded. These situations might cause 

wrong decisions to monitor the process since most of the data points which are in 

control actually detected as out-of control. Therefore, usage of uncorrelated data may 

cause misleading results about the process.  

It may also possible to make make preventive and corrective actions for the quality 

characteristics of coal by the ARIMA models since these models can forecast for the 

future using past data of the processes. 
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